The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase.

نویسندگان

  • C A Helliwell
  • A N Chin-Atkins
  • I W Wilson
  • R Chapple
  • E S Dennis
  • A Chaudhury
چکیده

Arabidopsis amp1 mutants show pleiotropic phenotypes, including altered shoot apical meristems, increased cell proliferation, polycotyly, constitutive photomorphogenesis, early flowering time, increased levels of endogenous cytokinin, and increased cyclin cycD3 expression. We have isolated the AMP1 gene by map-based cloning. The AMP1 cDNA encodes a 706;-amino acid polypeptide with significant similarity to glutamate carboxypeptidases. The AMP1 mRNA was expressed in all tissues examined, with higher expression in roots, stems, inflorescences, and siliques. Microarray analysis identified four mRNA species with altered expression in two alleles of amp1, including upregulation of CYP78A5, which has been shown to mark the shoot apical meristem boundary. The similarity of the AMP1 protein to glutamate carboxypeptidases, and in particular to N-acetyl alpha-linked acidic dipeptidases, suggests that the AMP1 gene product modulates the level of a small signaling molecule that acts to regulate a number of aspects of plant development, in particular the size of the apical meristem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRICOT encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in Lotus japonicus.

During the course of evolution, mainly leguminous plants have acquired the ability to form de novo structures called root nodules. Recent studies on the autoregulation and hormonal controls of nodulation have identified key mechanisms and also indicated a possible link to other developmental processes, such as the formation of the shoot apical meristem (SAM). However, our understanding of nodul...

متن کامل

Ecotype-dependent genetic regulation of bolting time in the Arabidopsis mutants with increased number of leaves.

Leaves are the major biomass-producing organs in herbaceous plants and mainly develop during vegetative stage by activities of shoot apical meristem. There is a strong correlation between leaf number and bolting, a characteristic phenotype during the transition to reproductive phase in Arabidopsis thaliana. In order to study interactions between leaf number and bolting, we isolated a Landsberg ...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis.

AUXIN RESPONSE FACTOR (ARF)-mediated signaling conveys positional information during embryonic and postembryonic organogenesis and mutations in MONOPTEROS (MP/ARF5) result in severe patterning defects during embryonic and postembryonic development. Here we show that MP patterning activity is largely dispensable when the presumptive carboxypeptidase ALTERED MERISTEM PROGRAM 1 (AMP1) is not funct...

متن کامل

ALTERED MERISTEM PROGRAM 1 Is involved in Development of Seed Dormancy in Arabidopsis

Mutants in the rice PLASTOCHRON 3 and maize VIVIPAROUS 8 genes have been shown to have reduced dormancy and ABA levels. In this study we used several mutants in the orthologous gene ALTERED MERISTEM PROGRAM 1 (AMP1) to determine its role in seed dormancy in Arabidopsis. Here we report that there are accession-specific effects of mutations in AMP1. In one accession, amp1 mutants produce seeds wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2001